Categories

App note: Comparison of LED circuits

Posted on Sunday, August 4th, 2019 in app notes by DP

an_osram_AN040

Another application note from OSRAM on different LED circuit design failure mode. Link here (PDF)

In recent years, Light Emitting Diodes (LEDs) have become a viable alternative to conventional light sources. The overriding advantages long life, high efficiency, small size and short reaction time have lead to the displacement, in ever increasing numbers, of incandescent bulbs. One of the markets where this change has become most evident is Automotive, where LEDs are used now not only for backlighting dashboards and switches, but also for exterior illumination in Center High Mounted Stop Lights (CHMSL), Rear Combination Lamps (RCL), turn signals and puddle lighting.

Despite the long life and low failure rates of LEDs, cars can be found, on occasion, with failed LEDs in their CHMSL. Most often this is due to a flawed circuit design wherein the LEDs were allowed to be overdriven. It is with that supposition in mind that this application note is written: to identify, characterize and comment on LED behavior and failure modes in serial and matrix circuits.

This entry was posted on Sunday, August 4th, 2019 at 5:00 pm and is filed under app notes. You can follow any responses to this entry through the RSS 2.0 feed. You can skip to the end and leave a response. Pinging is currently not allowed.

Leave a Reply

Notify me of followup comments via e-mail. You can also subscribe without commenting.

Recent Comments

  • Joe Desbonnet: Ya, I can recommend the low melting point solder. I used brand 'ChipQuik' and it's amazingly easy to use.
  • Jerome: I need a new BusPirate for the Fablab ;) Many thanks!
  • Max: Seems like an unexpectedly violent way to remove the chip indeed. A hot air station should of course do the job just fine, but in...
  • jose: Part removal described here is pure butchery, the cheapest hot air station will do a fast and clean job removing the QFP, heat air to...
  • Cody: Yes please